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Abstract
We consider two parallel corrugated plates and show that a Casimir torque
arises when the corrugation directions are not aligned. We follow the scattering
approach and calculate the Casimir energy up to second order in the corrugation
amplitudes, taking into account nonspecular reflections, polarization mixing
and the finite conductivity of the metals. We compare our results with the
proximity force approximation, which overestimates the torque by a factor 2
when taking the conditions that optimize the effect. We argue that the Casimir
torque could be measured for separation distances as large as 1 µm.

PACS numbers: 42.50.−p, 03.70.+k, 68.35.Ct

1. Introduction

The relevance of the Casimir effect [1] in connection with micro and nano-electromechanical
systems (MEMS and NEMS) has been recently highlighted [2–6]. The attractive Casimir
force can lead to permanent adhesion of the movable parts of MEMS and NEMS when they
are close enough, a phenomenon known as ‘stiction’, resulting in the malfunctioning of these
devices. On the other hand, the Casimir effect may provide novel actuation schemes [7, 8]
with promising potential applications.

Besides the usual normal Casimir force between metallic or dielectric plates, the lateral
Casimir force between corrugated plates [9, 10] can also be used for micro-mechanical control.
Very recently, two devices based on the lateral Casimir force were theoretically proposed: a
rack and pinion device [11], which is actuated by the lateral Casimir force between a cylinder
with a corrugated surface and a corrugated plane plate, and a Casimir ratchet [12], driven by
the lateral Casimir force between a plate with a symmetric corrugation and a plate with an
asymmetric corrugation.

The experimental results for the lateral Casimir force were first compared with a
theoretical analysis [9, 10] based on the proximity-force approximation (PFA), or Derjaguin
approximation [13, 14]. Within this approximation, the Casimir energy for nonplanar surfaces
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Figure 1. Periodic corrugations (period λC , amplitudes a1 and a2) are imprinted on both plates. L
is the average separation distance and θ the rotation angle. We assume that a1, a2 � L, λC .

(This figure is in colour only in the electronic version)

is obtained by simply averaging the energy for parallel planes over the local separation
distance. This approximation holds when the corrugation period λC is much larger than the
average separation distance L, so that the surfaces are nearly plane in the scale of L [15].
It is extremely important to check the accuracy of this approximation, since it was widely
employed for comparison with experimental results for the (normal) Casimir force between
curved surfaces [16–19] (see [20] for a more detailed discussion and a review on recent
theoretical advances).

We have computed the lateral force beyond the PFA [21, 22] by employing the
scattering approach [23], which takes into account the finite conductivity of the metallic
plates as well as diffraction and polarization mixing. The corrugation is treated as a small
perturbation of the plane geometry, and the lateral force is computed up to second order in the
corrugation amplitudes a1 and a2 for each plate. The perturbation expansion holds as long as
a1, a2 � λC,L, but arbitrary relative values of L and λC are allowed, with the PFA regime
corresponding to the limit L/λC → 0. This formalism was also employed to compute the
roughness correction to the Casimir force [24] and more recently the lateral Casimir–Polder
force [25, 26]. Beyond PFA theories for uni-axial corrugation on perfect reflecting plates were
first reported by Emig et al for both perturbative [27] and nonperturbative [28] regimes.

The lateral Casimir force results from breaking the translational symmetry along directions
parallel to the plates [29]. A more general situation occurs when the corrugations are not
aligned, so that the Casimir energy depends on the relative orientation between the two plates,
and a Casimir torque arises [30] (see figure 1). In this paper, we review the main physical
properties of this effect. Whereas the formalism developed in [27, 28] requires the existence
of a direction of translational symmetry (so as to allow for a convenient definition of field
polarizations which are not coupled by the nonspecular reflection in this case), the scattering
approach [23, 24] allows for a more general situation since it explicitly takes the coupling
between different polarizations into account. Thus, the scattering approach allows one to
consider the geometry with rotated corrugated plates, as long as the corrugation amplitudes
remain the smallest length scale as discussed above.

Thanks to the high sensitivity of torsion balance techniques [31], the Casimir torque
between corrugated plates provides an attractive way to measure nontrivial (i.e. beyond PFA)
geometry effects. The use of torsion balances has also been proposed to measure the Casimir
torque between two (plane) birefringent dielectric plates [32] (see also [33–36]). For the
proposed separation distances around 100 nm [32], the Casimir torque for corrugated plates
is up to three orders of magnitude larger than the torque between birefringent plates, for
comparable values of the separation distance and plate area, and taking realistic values for the
corrugation amplitudes and the finite conductivity of the metallic plates. This could allow one
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Figure 2. Level curves for the Casimir energy (in arbitrary units) as a function of the lateral
displacement b and of the rotation angle θ. Regions with lower energy values are darker.

to perform the experiment at larger separation distances, thus minimizing problems related to
plate parallelism.

2. Casimir energy for corrugated plates

We assume that both plates have sinusoidal corrugation profiles with the same period λC and
amplitudes a1 and a2. The corrugation lines of the very large bottom plate are along the y

direction (i.e., the surface profile depends only on x). The top plate position along the x axis
is b (by symmetry the energy does not depend on the position along the y axis), and θ is the
rotation angle. b = 0, θ = 0 corresponds to the configuration where the corrugation lines
are aligned with the surface crests facing each other (see figure 1). This is the configuration
corresponding to the global energy minimum as discussed below.

The top plate lateral dimensions are Lx and Ly, and L is the average separation distance
(along the z direction). The plate is large compared to L (so that border effects are negligible)
as well as compared to λC : Lx ∼ Ly � λC. The Casimir energy correction is then calculated
to order a1a2 [30]:

δEPP

LxLy

= a1a2

2
G(k) cos (kb) sinc(kLyθ/2), (1)

where k = 2π/λC, sinc(ξ) = sin ξ/ξ and G(k) is a response function which also depends on
the separation distance L. In figure 2, we plot the level curves of the Casimir energy correction
(in arbitrary units) as a function of b and θ . Since G(k) is always negative, the Casimir energy
has global minima at θ = 0 and b = 0, λC, 2λC, . . . and local minima around θ ≈ 1.43λC/Ly

(minimum of sinc(kLyθ/2)) and b = λC/2, 3λC/2, . . .

If we start from θ = b = 0 and rotate the top plate around its center (with the rotation axis
crossing the plates at a position where the local distance is minimum), we follow the dashed
line b = 0 shown in figure 2. For θ < λC/Ly the plate is attracted back to the minimum
at θ = b = 0 without sliding laterally. On the other hand, if the plate is released after a
rotation of θ > λC/Ly its subsequent motion will be a combination of rotation and lateral
displacement. In the following section, we compute the Casimir restoring torque for the case
of pure rotations with small rotation angles.
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Figure 3. Torque as a function of k = 2π/λC for a separation distance L = 1 µm. Corrugation
amplitudes: a1a2 = 200 nm2. The plate length along the direction of the corrugation lines is
Ly = 24 µm. Results for gold-covered plates (λP = 137 nm) correspond to the solid (scattering)
and dotted (PFA) lines; the dashed line corresponds to perfect reflectors. All results are computed
up to second order in the corrugation amplitudes. The vertical dotted line indicates the optimal
value k = 2.6 µm−1.

3. Casimir torque

The Casimir torque, given by

τ = − ∂

∂θ
δEPP,

is maximum at θ = 0.66λC/Ly where it is given by

τ

LxLy

= 0.109a1a2kG(k)Ly. (2)

As could have been expected, the torque per unit area is proportional to the length of the
corrugation lines Ly , which provides the scale for the moment arm.

We compute the response function G(k) using the plasma model with plasma wavelength
λP = 137 nm (corresponding to gold-covered plates). In order to fix the numbers given as
examples below, we take Ly = 24 µm and corrugation amplitudes such that a1a2 = 200 nm2

(to be compared with a1a2 = 472 nm2 in the lateral force experiment [9, 10], where a1 and
a2 were unequal). Note that a change of these values is easily taken into account by using the
scaling law (2).

If we also choose the corrugation period as in the lateral force experiment (λC = 1.2 µm),
we find, at L = 100 nm, τ/(LxLy) = 5.2 × 10−7 Nm−1, approximately three orders of
magnitude larger than the torque per unit area for birefringent plates calculated in [32] for the
most favorable configuration at the same separation distance. The much larger figures found
in our case should allow one to perform the experiment at larger separation distances.

At any given value of L, the torque between corrugated plates can be made larger by
choosing the corrugation period so as to maximize kG(k). For separation distances above
50 nm, this corresponds to k ≈ 2.6/L or λC ≈ 2.4L. In figure 3, we plot the torque as a
function of k for L = 1 µm (solid line). The maximum at k = 2.6 µm−1 is indicated by a
vertical dotted line. We also show the values obtained from the model with perfect reflectors
(dashed line). They overestimate the torque by 16% near the peak region.
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We recover the second-order PFA result for the Casimir torque from equation (2) by taking
the limit k → 0. The response function satisfies the general ‘proximity force theorem’ [21]
G(0) = e′′

PP(L), where ePP is the Casimir energy per unit area for parallel planes. We thus find(
τ

LxLy

)
PFA

= 0.109a1a2ke′′
PP(L)Ly. (3)

According to equation (3), the torque grows linearly with k in the PFA (dotted straight line in
figure 3). Figure 3 shows that the scattering curve is very close to the PFA straight line when
k � 1/L as expected (G(k) ≈ G(0)). However, the discrepancy increases with k, and at the
peak value k = 2.6/L = 2.6 µm−1 the PFA overestimates the torque by 103%. A detailed
discussion of the ratio G(k)/G(0) for several separation distances is presented in [22].

4. Conclusion

As in the case of the lateral force, the Casimir torque between corrugated metallic plates
might have potential applications in the design of MEMS and NEMS. We have studied the
Casimir torque with the help of the scattering approach, which provides an exact result for the
second-order energy correction.

This torque is up to three orders of magnitude larger than the torque between birefringent
dielectric plates for comparable separation distance and area. The measurement of the Casimir
torque with corrugated plates would provide a direct demonstration of a nontrivial (beyond
PFA) geometry dependence of the Casimir energy.
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